Tuesday 28 November 2017

Flytte Gjennomsnittet Filter Utforming


Den bevegelige gjennomsnittet som et filter Det bevegelige gjennomsnittet brukes ofte til utjevning av data i nærvær av støy. Det enkle glidende gjennomsnittet blir ikke alltid gjenkjent som FIT-filteret (Finite Impulse Response), det er det, men det er faktisk et av de vanligste filtre i signalbehandling. Ved å behandle det som et filter, kan det sammenlignes med f. eks. Windowed-sinc filtre (se artiklene på lavpass, høypass og bandpass og bandavvisningsfiltre for eksempler på dem). Den store forskjellen med de filtre er at det bevegelige gjennomsnittet er egnet for signaler som den nyttige informasjonen er inneholdt i tidsdomene. hvorav utjevningsmålinger ved gjennomsnittsverdi er et godt eksempel. Windowed-sinc filtre, derimot, er sterke utøvere i frekvensdomene. med utjevning i lydbehandling som et typisk eksempel. Det er en mer detaljert sammenligning av begge typer filtre i Time Domain vs Frekvensdomenes ytelse av filtre. Hvis du har data som både tid og frekvensdomene er viktige for, kan du kanskje se på Variasjoner på Moving Average. som presenterer en rekke vektede versjoner av det bevegelige gjennomsnittet som er bedre på det. Det bevegelige gjennomsnittet av lengden (N) kan defineres som skrevet som det typisk blir implementert, med den nåværende utgangsprøven som gjennomsnittet av de tidligere (N) - prøver. Sett som et filter, utfører det bevegelige gjennomsnitt en konvolusjon av inngangssekvensen (xn) med en rektangulær puls av lengde (N) og høyde (1N) (for å gjøre området for pulsen, og dermed forsterkningen av filteret , en ). I praksis er det best å ta (N) merkelig. Selv om et glidende gjennomsnitt kan også beregnes ved å bruke et jevnt antall prøver, har det en fordel at forsinkelsen av filteret vil være et heltall antall prøver ved bruk av en merkelig verdi for (N) siden forsinkelsen av et filter med (N) prøvene er nøyaktig ((N-1) 2). Det bevegelige gjennomsnittet kan deretter justeres nøyaktig med de opprinnelige dataene ved å skifte det med et heltall antall prøver. Time Domain Siden det bevegelige gjennomsnittet er en konvolusjon med en rektangulær puls, er frekvensresponsen en sinc-funksjon. Dette gjør det noe som det dobbelte av windowed-sinc filteret, siden det er en konvolusjon med en sinc puls som resulterer i en rektangulær frekvensrespons. Det er denne sync frekvensrespons som gjør det bevegelige gjennomsnittet en dårlig utøver i frekvensdomenet. Det virker imidlertid veldig bra i tidsdomene. Derfor er det perfekt å glatte data for å fjerne støy mens du samtidig holder et raskt trinnsvar (Figur 1). For den typiske Additive White Gaussian Noise (AWGN) som ofte antas, har gjennomsnittlige (N) prøver effekten av å øke SNR med en faktor (sqrt N). Siden støyen for de enkelte prøvene er ukorrelert, er det ingen grunn til å behandle hver prøve forskjellig. Derfor vil det bevegelige gjennomsnittet, som gir hver prøve samme vekt, bli kvitt den maksimale mengden støy for en gitt trinnresponsskarphet. Gjennomføring Fordi det er et FIR-filter, kan det bevegelige gjennomsnittet implementeres gjennom konvolusjon. Det vil da ha samme effektivitet (eller mangel på det) som alle andre FIR-filter. Det kan imidlertid også implementeres rekursivt, på en svært effektiv måte. Det følger direkte fra definisjonen at denne formelen er resultatet av uttrykkene for (yn) og (yn1), det vil si hvor vi legger merke til at forandringen mellom (yn1) og (yn) er at et ekstra uttrykk (xn1N) vises på slutten, mens uttrykket (xn-N1N) er fjernet fra begynnelsen. I praktiske anvendelser er det ofte mulig å utelate divisjonen med (N) for hvert begrep ved å kompensere for den resulterende gevinsten av (N) på et annet sted. Denne rekursive gjennomføringen vil bli mye raskere enn konvolusjon. Hver ny verdi av (y) kan beregnes med bare to tillegg, i stedet for (N) tilleggene som ville være nødvendige for en enkel implementering av definisjonen. En ting å se etter med en rekursiv implementering er at avrundingsfeil vil samle seg. Dette kan eller ikke kan være et problem for søknaden din, men det innebærer også at denne rekursive implementeringen faktisk vil fungere bedre med et heltall implementering enn med flytende punktnumre. Dette er ganske uvanlig, siden en flytende punktimplementering vanligvis er enklere. Konklusjonen av alt dette må være at du aldri bør undervurdere bruken av det enkle glidende gjennomsnittsfilteret i signalbehandlingsprogrammer. Filter designverktøy Denne artikkelen er utfylt med et filterdesignverktøy. Eksperimenter med forskjellige verdier for (N) og visualiser de resulterende filtrene. Prøv det nåFrekvensrespons av det kjørende gjennomsnittsfiltret Frekvensresponsen til et LTI-system er DTFT av impulsresponsen. Impulsresponsen av et L-prøve-glidende gjennomsnitt er Siden det bevegelige gjennomsnittlige filteret er FIR, reduserer frekvensresponsen til den endelige sum Vi kan bruke den svært nyttige identiteten til å skrive frekvensresponsen som hvor vi har sluppet minus jomega. N 0 og M L minus 1. Vi kan være interessert i størrelsen på denne funksjonen for å avgjøre hvilke frekvenser som kommer gjennom filteret som ikke er overvåket og som er dempet. Nedenfor er et plott av størrelsen på denne funksjonen for L 4 (rød), 8 (grønn) og 16 (blå). Den horisontale aksen varierer fra null til pi radianer per prøve. Legg merke til at frekvensresponsen i alle tre tilfeller har en lowpass-karakteristikk. En konstant komponent (nullfrekvens) i inngangen passerer gjennom filteret uopprettholdt. Visse høyere frekvenser, som pi 2, elimineres helt av filteret. Men hvis hensikten var å designe et lavpassfilter, har vi ikke gjort det veldig bra. Noen av de høyere frekvensene dempes bare med en faktor på ca 110 (for 16 poeng glidende gjennomsnitt) eller 13 (for firepunkts glidende gjennomsnitt). Vi kan gjøre mye bedre enn det. Ovennevnte tegning ble opprettet av følgende Matlab-kode: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)). (1-exp (-iomega)) H8 (18) iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)) (1-exp (-iomega)) plot (omega, abs (H4) abs H16)) akse (0, pi, 0, 1) Opphavsretts kopi 2000- - Universitetet i California, BerkeleyFrekvensrespons av flytende gjennomsnittsfilter og FIR-filter Sammenlign frekvensresponsen til det bevegelige gjennomsnittsfilteret med det vanlige FIR-filteret. Sett koeffisientene til det vanlige FIR-filteret som en sekvens av skalerte 1s. Skaleringsfaktoren er 1filterLength. Opprett et dsp. FIRFilter System objekt og sett dets koeffisienter til 140. For å beregne det bevegelige gjennomsnittet, opprett et dsp. MovingAverage System objekt med et glidende vindu med lengde 40 for å beregne glidende gjennomsnitt. Begge filtre har samme koeffisienter. Inngangen er Gaussisk hvit støy med et gjennomsnitt på 0 og en standardavvikelse på 1. Visualiser frekvensresponsen til begge filtre ved hjelp av fvtool. Frekvensresponsene samsvarer nøyaktig, hvilket viser at det bevegelige gjennomsnittsfilteret er et spesielt tilfelle av FIR-filteret. Til sammenligning, se filterets frekvensrespons uten støy. Sammenlign filterfrekvensresponsen til det ideelle filteret. Du kan se at hovedløkken i passbåndet ikke er flatt og krusninger i stoppbåndet ikke er begrenset. Den glidende gjennomsnittlige filtrefrekvensresponsen stemmer ikke overens med frekvensresponsen til det ideelle filteret. For å realisere et ideelt FIR-filter, endre filterkoeffisientene til en vektor som ikke er en sekvens av skalerte 1s. Frekvensresponsen til filteret endres og har en tendens til å bevege seg nærmere det ideelle filterresponset. Utform filterkoeffisientene basert på forhåndsdefinerte filterspesifikasjoner. For eksempel, designe et Equiripple FIR filter med en normalisert cutoff frekvens på 0,1, en passband ripple på 0,5, og en stoppbånd dämping på 40 dB. Bruk fdesign. lowpass for å definere filterspesifikasjonene og designmetoden for å designe filteret. Filterresponsen i passbåndet er nesten flatt (ligner det ideelle svaret) og stoppbåndet har begrenset ekvipler. MATLAB og Simulink er registrerte varemerker for The MathWorks, Inc. Vennligst se mathworkstrademarks for en liste over andre varemerker eid av The MathWorks, Inc. Annet produkt - eller varemerker er varemerker eller registrerte varemerker for deres respektive eiere. Velg ditt CountryMoving Average Filter (MA filter) Laster inn. Det bevegelige gjennomsnittsfilteret er et enkelt Low Pass FIR-filter (Finite Impulse Response) som vanligvis brukes til å utjevne en rekke samplede datasignaler. Det tar M prøver av inngang av gangen og tar gjennomsnittet av disse M-prøvene og produserer et enkelt utgangspunkt. Det er en veldig enkel LPF-struktur (Low Pass Filter) som er nyttig for forskere og ingeniører å filtrere uønsket støyende komponent fra de tiltenkte dataene. Når filterlengden øker (parameteren M), øker utgangens glatthet, mens de skarpe overgangene i dataene blir stadig stumpere. Dette innebærer at dette filteret har utmerket tidsdomene respons, men en dårlig frekvensrespons. MA-filteret utfører tre viktige funksjoner: 1) Det tar M-inngangspunkter, beregner gjennomsnittet av disse M-punktene og produserer et enkelt utgangspunkt 2) På grunn av beregnede beregninger. filteret introduserer en bestemt mengde forsinkelse 3) Filteret fungerer som et lavpassfilter (med dårlig frekvensdomenerespons og et godt domenerespons). Matlab-kode: Følgende matlab-kode simulerer tidsdomæneresponsen til et M-punkts-flytende gjennomsnittfilter, og viser også frekvensresponsen for forskjellige filterlengder. Time Domain Response: På den første plottet har vi inngangen som går inn i det bevegelige gjennomsnittsfilteret. Inngangen er støyende og målet vårt er å redusere støyen. Neste figur er utgangsresponsen til et 3-punkts Moving Average-filter. Det kan utledes fra figuren at 3-punkts Flytende Gjennomsnitt-filteret ikke har gjort mye for å filtrere ut støyen. Vi øker filterkranene til 51 poeng, og vi kan se at støyen i utgangen har redusert mye, som er avbildet i neste figur. Vi øker kranen videre til 101 og 501, og vi kan observere at selv om støyen er nesten null, blir overgangene slått ut drastisk (observere skråningen på hver side av signalet og sammenligne dem med den ideelle murveggovergangen i vår innsats). Frekvensrespons: Fra frekvensresponsen kan det hevdes at avrullingen er veldig treg og stoppbåndet demper er ikke bra. Gitt dette stoppbåndet demping, klart, det bevegelige gjennomsnittlige filteret kan ikke skille ett bånd med frekvenser fra en annen. Som vi vet at en god ytelse i tidsdomene resulterer i dårlig ytelse i frekvensdomene, og omvendt. Kort sagt, det bevegelige gjennomsnittet er et usedvanlig godt utjevningsfilter (handlingen i tidsdomene), men et uvanlig dårlig lavpassfilter (handlingen i frekvensdomenet) Eksterne lenker: Anbefalte bøker: Primær sidebjelke

No comments:

Post a Comment